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Galerkin fmiteelement methods of high accuracy are developed for solving the capillary 
equation, the nonlinear elliptic partial differential equation describing the shape of an 
interface between two immiscible fluids. The calculation of an interface meeting the walls 
of a capillary of square cross section at a given contact angle is used as a model problem in 
numerical experiments comparing the relative efficiencies of bilinear, reduced quadratic, 
biquadratic, and Hermite bicubic finite-element interface approximations. Newton methods 
are employed for solving the nonlinear algebraic equation sets resulting from the fmite- 
element discretizations. The H&mite bicubic element is the most efficient because of the 
relatively few number of elements needed to calculate highly accurate interface shapes. 
The reduced quadratic finiteelement-Newton method is also tested against a finite-differ- 
ence scheme. The finite-element calculations are demonstrated more efficient. 

1. INTRODUCTION 

The shape of an interface between two immiscible static fluids is described by the 
well-known Young-Laplace or capillary equation which proportionates the local 
mean curvature of the interface to the drop in static pressure across it. Once a spatial 
coordinate representation for the interface has been assumed, the capillary equation 
is readily seen as a nonlinear elliptic partial differential equation in two space dimen- 
sions. Closed-form solutions of the full capillary equation are rare and the computer 
has been enlisted to generate approximate interface shapes. 

A numerical algorithm for the solution of the capillary equation or any nonlinear 
elliptic differential equation can be characterized by the discretization used to approxi- 
mate the equation’s solution and the iteration technique used to solve the resulting 
set of nonlinear equations. Finite-difference methods are traditionally used for dis- 
cretization. Finite-element methods are gaining popularity. Methods for solving 
nonlinear equations such as Newton’s method, secant method, and successive approxi- 
mations yield linear equation sets at each iteration and can be further classified by the 
technique, either direct or iterative, that is used to solve the system of equations. 

Both finite-difference [l-4] and finite-element [4-lo] methods have been used for 
approximating the capillary equation. These approximations and the nonlinear 
iteration methods used with them are summarized in Table I. In this report we detail 
a finite-element-Newton method for the numerical solution of the capillary equation. 
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CALCULATION OF CAPILLARY SURFACES 219 

The method differs from earlier finite-element approximations to this probiem [4-81 
in that here reduced quadratic, biquadratic, and Hermite bicubic finite-element basis 
functions of higher-order accuracy are used instead of the more easily formulated 
linear approximation. 

Three variants of Newton’s method are tested for solution of the nonlinear finite- 
element equations: (1) the standard Newton procedure where the Jacobian matrix J 
is formulated at each iteration, (2) simplified Newton iteration in which J is calculated 
only initially, and (3) an adaptive method that combines the desirable features of 
both (1) and (2). Direct factorization is used to solve the linear equation sets that 
result at each iteration in all three methods. 

Since few convergence estimates for numerical solution of the capillary problem 
are known, empirical estimates must be inferred from computational experiments. 
The high-order finite-element approximations are compared with a similar finite- 
element formulation using bilinear basis functions and also to the finite-difference 
approximation of Concus [ll] as implemented by Doss [3]. The model capillary 
problem used as the basis of these comparisons is the calculation of the shape of the 
interface between two immiscible fluids in a square capillary. Here the sides of the 
capillary are coordinate surfaces and both finite-difference and finite-element dis- 
cretizations are easily computed, although the finite-element methodology extends to 
capillaries with irregular shapes where it has clear advantages over finite-difference 
methods [lo]. The model problem has been chosen because it admits a simple closed- 
form solution; when the effects of gravity are unimportant, the interface shape is 
given by a piece of sphere. This known solution allows comparisons of accuracy for 
numerical approximations. 

The finite-element-Newton algorithm presented here is not limited to the capillary 
problem, but is applicable for any nonlinear elliptic partial differential equation in 
divergence form [12, 131. 

2. TIIE CAPILLARY PROBLEM 

The Young-Laplace or capillary equation is simply written as 

2ffcr =pA -pi = Ap, (1) 

where u is the interfacial tension of the interface, His the local mean curvature, and 
Ap is the drop in pressure across the interface (see Fig. 1). For an interface whose 
elevation can be represented in rectangular Cartesian coordinates u = U(X, v), the 
mean curvature of the interface is given as 

k - ud - u,j 
2~9 = -VII * N = ---II . c1 + u,z + u,31,2 , 

N is the unit vector field everywhere normal to the interface, Vu = ia/& + jZ@y, 
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FIG. 1. Vertical cross section of interface between two immiscible static fluids in a square 
capillary. The interface meets the capillary’s walls at a prescribed contact angle 0, . 

j-N=cos 8, 
z 

COMPUTATIONAL 

DOMAIN 

---XT 
j,.E=O 

-z- 
X 

FIG. 2. Computational domain for the calculation of an interface in a square capillary. Sym- 
metry and capillary wall boundaries are shown. 

and (i, j, k) are the unit vectors in the (x, y, U) directions. Substituting (2) into (1) gives 

or 
-VII . N = Apia = K 

(1 + %“I Km - 
(1 

2u,u,u,, + (l + %“) ‘,, = K 
+ 24,2 + z&y2 

(3) 

(4) 
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As shown in Fig. 2, the square capillary geometry has two planes of reflective 
symmetry and the computational domain is taken as only one quadrant of the 
capillary’s entire cross section. The boundary conditions for (2) or (3) are prescribed 
at the symmetry boundaries Z&,, and the capillary’s walls Z&,Lm . Along 
~=%OLID the interface meets the capillary at a prescribed contact angle 8, which is 
defined in terms of II, , the outward directed unit normal to the wall as 

N - n,, = cos 8, , on a%OLID . (5) 

On asyM the symmetry boundary condition is 

N * nb = 0, 0n agsyM. (6) 

When the pressure difference K is taken as a constant, Eq. (4) describes a surface of 
constant mean curvature +K and a simple solution of (4)-(6) is known. For 45” < 
13, < 90” the piece of sphere 

qX, v) = i/cos ec - [I/COS~ 8, - x2 - pp2 (7) 

gives an equilibrium interface shape if 

K L 4cos e. 
-; D 

where D is the side length of the capillary. Equation (8) is a necessary constraint for 
equilibrium that arises from the balance of vertical forces (constructed by integrating 
Eq. (3) over 9) on the interface. 

Concus and Finn [14] have shown that for 8, < 45” the solution to Eqs. (4)-(6) 
fails to exist in the neighborhood of the corner. Physically, for 8, < 45”, a film of 
liquid will run up the corner. The film will rise past the point where its thickness is 
smaller than that allowed for a bulk liquid phase and Eq. (4) becomes invalid. 

3. GALERKIN FINITE-ELEMENT METHOD 

The Galerkin finite-element method as previously presented in [5-l l] is implemented 
to approximate the solution of the capillary equation (3) and the boundary conditions 
(5) and (6). The computational domain is divided into quadrilateral subdomains or 
elements on which a set of polynomial basis or trial functions is defined. The interface 
shape U(X, y) is approximated in each element E as a sum of these basis functions 
multiplied by unknown coefficients 

4x, v) = c %@fE)(X~ VI in E. (9) 
alli 
illE 

The bilinear, reduced quadratic, biquadratic, and Hermite bicubic polynomial basis 
functions studied in this report are summarized in Table II. 
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The constants in the bilinear, reduced quadratic, and biquadratic polynomials are 
completely determined by the Lagrangian interpolation conditions specified at the 
element’s nodes. The reduced quadratic element differs in form from the full bi- 
quadratic approximation only by the elimination of the x”v2 term from the polynomial 
and the omission of the centroid node from the element. The number of unknowns 
in each approximation for a M x M mesh of quadrilaterals of side length h is also 
shown in Table II along with the order of accuracy predicted for solving the linear 
Laplace’s equation [15]. As is expected, the quadratic basis functions form more 
accurate solutions than the bilinear polynomials. They also have more unknowns 
(ai} in their approximation for the same quadrilateral discretization of the domain. 

These three Lagrangian basis functions lead to numerical solutions which are 
mathematically continuous everywhere in the domain 9 but which have discontinuous 
first derivatives along element boundaries. The Hermite bicubic approximation also 
shown in Table II has by construction continuous first derivatives throughout 9 
and is of higher-order accuracy than either the quadratic or bilinear elements. More 
detailed accounts of these elements can be found elsewhere [15]. 

The coefficients {CQ} are determined by forcing the set of Galerkin weighted residual 
equations formed from Eq. (3) to zero, i.e., 

s @f&‘rr * N + K) da = 0, i = l,..., X, (10) 9 

where M is the total number of basis functions in the domain. Integrating Eq. (10) by 
parts and applying the divergence theorem gives 

Substituting the boundary conditions (5) and (6) into the residual Eqs. (11) yields 

R”(a) = I9 (@f,jK - V@f,, * N) da + cos 8, $ a~soLID @f& Y> ds = 0, 

i=l ,...) A-. (12) 

It is not merely fortuitous that the boundary conditions blend easily into the Galerkin 
residuals. These boundary conditions are the natural conditions for Eq. (3); Eq. (12) 
is the same result as obtained from a variational or energy minimization formulation 
of the capillary problem (see [6]). 

Substituting the definition of N given in Eq. (2) into Eq. (12) yields 

i = l,..., Jv-3 (13) 

which, once the solution expansion Eq. (9) is introduced, is recognized as a nonlinear 
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algebraic equation set for {CQ}. The area integrals in Eq. (13) are evaluated by Gaussian 
quadrature [17]. The four-point formula is used with bilinear and reduced quadratic 
basis functions, while the nine-point formula is necessary for calculations with Hermite 
bicubic elements. Biquadratic basis functions require the nine-point integration 
formula to ensure definiteness of the approximate residual equations (see [15, p. 1891). 

4. SOLUTION OF FINITE-ELEMENT EQUATIONS 

Because the set of residual equations (13) is nonlinear, its solution requires iteration. 
Many techniques are available, see [16] for a useful compendium. The three methods 
which are tested here are full Newton, simplified Newton, and adaptive Newton 
iterations. The differences between them are explained below. 

The full Newton method (FNM) calculates the new (k + 1) st iterate for the un- 
knowns {c@+‘)) by the formula 

~(k+l) = a(k) - J-l(a(K))R(a(k)) s &) _ S(k), 04) 

where the Jacobian matrix (Jij = aRi/aolj) is the local gradient of the residuals 
with respect to the unknown coefficients. This iteration is continued until the correc- 
tion vector 6’“) satisfies the convergence criterion 

11 Sck) /jm = z=l,...,K I C) I < de, max (15) 

where de is a prescribed tolerance (usually lo-lo). At each iteration Eq. (14) requires 
the formulation and solution of the linear equation set 

J’“’ @k’ = R’“’ (16) 
with 

The matrix J is symmetric, sparse, and banded. The bandwidth depends on the 
numbering scheme for the nodes. Equation (16) is solved by factoring J into LDLT 
form, where L is lower triangular and D is diagonal; this is done using profile matrix 
storage techniques as implemented in [17]. The resulting triangular equation systems 
are easily solved. 

In the simple Newton method (SNM) the Jacobian matrix if formulated and factored 
only for the initial approximation {a(O)). Successive iterates are calculated with this 
initial gradient approximation 

a(K+l) = a(k) _ J-l(a'O')R(a'"')m (18) 
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An iteration of SNM requires only the calculation of R(ar(“)) and the solution of the 
triangular systems 

L(a(O))D(a(‘J)) LT(a(O’) 8’“) = R(a(“)). (19) 

For mildly nonlinear equation sets SNM may be expected to be efficient. The accuracy 
of the updated gradient approximation in FNM leads to accelerated convergence, but 
at the expense of more computation, compared to SNM in which the gradient approxi- 
mation is not updated. 

Yet another alternative is an adaptive Newton method (ANM) which consists of an 
initial full Newton iteration followed by SNM iterations as long as the convergence 
rate f(“+l) 

f’“‘” 5% 11 s(~+q2/11 S’Jq, , (20) 

where Ij W 11; = & 8ia)‘, is smaller than a specified level f. ; the value f. = + is 
employed here. If during execution f(“+” increases above f. , a new approximation 
to the Jacobian matrix is calculated and factored, and the iterations are continued. The 
ANM iteration procedure is shown schematically in Fig. 3. 

1 t 
NO 

FULL NEWTON ITERATION SIMPLE NEWTON ITERATION CHECKRATEOFCONVERGENCE 

start -b 
+-. YES 

m(O) 
i/E(k) '1 

"2 

calculate J (rl@l), gp+ calculate _R(g(k)) 
__ < .5? 

: _ ll~(k-l)ll* 

4 

v v 
NO 

FACTOR JACOBIAN SOLVE LINEAR EQUATION SET CHECK CONVERGENCE 

J(,i(k))= L(k)ok)L(k)T B L(k)oWL(k)T,>(k) ,K(-,(k)) _+ ,, c(k)IIra 5 10-1~ ? 

YES 

1 
w 

FIG. 3. Schematic of adaptive Newton method (ANM) algorithm. Full Newton (FNM) and 
simple Newton (SNM) schemes are produced by setting the convergence rate check to NO and 
YES, respectively. 

The three iteration schemes, FNM, SNM, and ANM, for solving the nonlinear 
equation set (13) generated for the shape of an interface in a square capillary with 
contact angles of 80”, 60”, and 45” are compared in Tables III and IV. Grids of 8 and 
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16 reduced quadratic elements in each direction were employed in these calculations 
which were performed on the CDC Cyber 74 computer at the University of Minnesota. 
Timing estimates are reported in central processor seconds. The initial approximation 
{a:“‘} was taken to be a flat interface in all calculations. 

TABLE III 

Execution times for single iterations of full Newton (FNM) and simple Newton @NM) methods. 

Time/iteration (cp set) 

8 x 8 grid 16 x 16grid 

FNM SNM FJNM SNM 

Form J(afL)), R(cG’) 0.33 - 1.37 

Form R(alX)) - 0.14 - 0.54 
Factor J(a’“)) 0.16 - 1.75 - 

Solve IQ. (16) 0.03 - 0.21 
Solve Eq. (19) - 0.03 - 0.21 

Total time 0.52 0.17 3.33 0.65 

The execution times for single iterations of SNM and FNM are summarized in 
Table III. The SNM iteration is factors of 3 and 5 faster than the FNM iteration for 
8 x 8 and 16 x 16 grids, respectively. The increase in this ratio with grid refinement 
is due to the increasing importance of the factorization of J in the overall cost of a 
FNM iteration. 

The results of the convergence tests for the three Newton methods are tabulated in 
Table IV. The number of iterations required for convergence of all three methods is 
insensitive to the number of elements used in the finite-element approximation. For 
8, = 80” the interface is nearly flat and ANM reduces in actuality to SNM; the 
initially calculated Jacobian matrix is a good approximation for later iterations and 
SNM converges quickly enough that the adaptive method need not update J. 

For contact angles of 60” and 45”, the initial Jacobian matrix is no longer a good 
approximation for later iterations; SNM converges very slowly and is less efficient 
than either FNM or ANM. For low contact angles ANM is as or more efficient than 
FNM. Its efficiency is due to its flexibility; it mimics the behavior of both SNM and 
FNM in the regions where these methods converge rapidly. No attempt has been 
made to optimize the convergence rate criterionf, ; better convergence may be obtained 
by specifyingf, adaptively at each iteration. 
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5. COMPUTATIONAL EXPERIMENTS 

Fortran computer programs implementing the four finite-element basis functions 
presented above have been written for the calculation of an interface in a square 
capillary with D = 2. Sample interface shapes for contact angles of 80”, 60”, 50”, and 
45” are shown in Fig. 4. As BC is decreased from 90”, the interface shape becomes 
progressively steeper until at 8, = 45” the true gradient of the interface 1 VuE / becomes 
infinite in the corner. Because the nonlinearity in (3) depends on the gradient I Vu /, 
interface shapes corresponding to contact angles near 45” are difficult to calculate; 

Y 
Bc = 80' 

Y 
Bc = 500 

Y 
0, = 60" 

FIG. 4. Oblique views of capillary surfaces in one quadrant of a square capillary for 0, = 80”, 
60”, 50”, and 45”. 
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the convergence of the nonlinear iteration is slower and the calculated shapes have 
more error than those corresponding to higher contact angles. 

The four finite-element approximations have been compared in these calculations 
according to their accuracy, measured by 

(21) 

and execution time measured in central processor seconds. The results were obtained 
with the CDC Cyber 74 computer at the University of Minnesota. Programs were 
compiled with the FTN4 (OPT = 2) compiler. Square element grids have been used 
in all calculations, therefore each grid has been characterized by its corresponding 
element size h. The full Newton iteration scheme was used to solve the nonlinear 
equation sets in all calculations, 

/ 
BILINEAR, 

f 

0.1 
MESH h 

0 

FIG. 5. Convergence of bilinear, reduced quadratic, biquadratic, and Hermite bicubic finite 
element approximations for the shape of an interface in a square capillary as a function of mesh size 
h for 0, = 60”. 
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Figure 5 shows the accuracy obtained with each finite-element basis as a function 
of h for BC = 60”. As predicted by the analysis for linear equations, the quadratic 
and Hermite bicubic basis functions gave much improved results over the bilinear 
elements. If the dependence of the accuracy of the finite-element solution on h is 
assumed to be of the form 

11 u - UE 112 = C@,) /PC), (22) 

the exponent r(e,) can be evaluated from the slopes of the curves in Fig. 5. With 
the exception of the Hermite bicubic basis these matched very well with those predicted 
for linear equations (see Table II). 

The relative efficiencies of the four elements for calculating interfaces within a 
given error tolerance are shown in Fig. 6 again for 8, = 60”. The high-order accurate 
elements were much more efficient than the bilinear element. The Hermite bicubic 
element was the most efficient approximation, especially when extreme accuracy in 
the solution is desired. 

0.1 I I 

1e3 ie4 KT5 d 
SOLUTION ERROR Ilu-uEll, 

FIG. 6. Execution times (cp set) as a function of solution error for the four finite-element basis 
functions with 0, = 60’. 

When the contact angle was lowered to 45”, the rate of convergence of the finite- 
element solution to the exact solution decreased as shown by the slopes r(0,) in 
Fig. 7. Again, the Hermite bicubic element gives the most accurate results, but the 
errors are two orders of magnitude larger than those for B0 = 60” and the same grid 
size. The biquadratic and reduced quadratic elements no longer give the same conver- 
gence rates as they did in the 8, = 60” calculations. The reduced quadratic elements 



I 
0.1 

MESH SIZE h 

I 
1.0 

FIG. 7. Convergence of bilinear, reduced quadratic, biquadratic, and Hermite bicubic tinite- 
element approximations for the shape of an interface in a square capillary as a function of mesh 
size h for 0, = 45”. 

BIQUADRATIC 

BILINEAR-/ 

/ 

QUADRATIC - 

0.1 ’ I 

ICY KY3 k4 

SOLUTION ERROR Ilu-uEll, 

FIG. 8. Execution times (cp set) as a function of solution error for the four finite-element 
functions with e, = 45”. 

5W33/2-6 
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seemed to give slightly better results for fine grid spacing although the difference is 
probably not significant. 

The error in the finite-element calculations for Bc = 45” are plotted as a function of 
execution time in Fig. 8. The Hermite bicubic element calculations are the most 
efficient when very accurate solutions are desired. The reduced quadratic element 
calculations are very efficient, even surpassing the Hermite bicubic calculations for 
high error tolerances. 

The dependence of 11 u - uE /I2 on Bc for the four elements is plotted in Fig. 9 for 
h = 0.125. The errors in the calculations using the three high-order polynomials all 
show strong dependence on 8, , whereas the error in the bilinear calculations is relative- 
ly insensitive to Bc . Such behavior is predicted by finite-element approximation 
theory [15]. The constant C(0,) in Eq. (22) depends on the true solution which in 
turn depends on 0,. The constant for a bilinear approximation is a function of 

‘A BILINEAR 
\ ---- 

-- 
---* 

-\ 
I. 

60 80 

CONTACT ANGLE Qc 

FIG. 9. Error in finite-e~ement approximations as a function of contact angle 0, for 8 x 8 element 
grid (h = 0.125). 
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II QuE 11s 9 whereas the higher-order polynomial approximations depend on the norm 
of higher-order gradients of the solution. For 0, = 45” the gradient of Eq. (7) is 
singular at x = 1 and y = 1 as are all higher-order derivatives. These singularities 
damage the accuracy of the finite-element solutions. 

To test the merits of the Gale&in finite-element solution of the capillary problem 
to other discretization techniques, the reduced quadratic finite-element code was 
compared to the finite-difference approximation of Concus [lo] in which the resulting 
set of nonlinear equations is solved by successive approximations coupled with the 
dynamic alternating-direction implicit method of Doss [3, 181 for solving the resulting 

16’ 

t 

(0.501,~’ i” 

Id2 
/ 

I’ ../ 
.!’ 

(2.26!./“,,.‘.’ 
,’ / 

I 

IO51 0.01 0.1 1.0 
MESH SIZE h 

FIG. 10. Convergence of bilinear (- . -) and reduced quadratic (-) finite-element and finite- 
difference (- - -) approximations to the maximum interface height in a square capillary for varying 
mesh size h. Results for 0, = 50” and 45” are shown with execution times on the LBL CDC 7600 
given in parenthesis. 
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linear equation set. The tests were run with the CDC 7600 computer at Lawrence 
Berkeley Laboratory using the before mentioned initial approximation {IX(O)} and 
convergence criterion. The relative error in each calculation evaluated at the corner 
x = 1 and 4’ = 1 is shown in Fig. 10 as a function of grid size for contact angles of 
50” and 45”. The execution times for each calculation are shown in parentheses. The 
reduced quadratic finite-element solution was more accurate for a given execution 
time. The finite-difference approximation exhibits a similar convergence rate to the 
bilinear finite-element approximation also displayed in Fig. 10; this is expected since 
both techniques reduce to U(h2) approximations for linear problems (see [lo, 151). 

6. DISCUSSION 

The finite-element-Newton methods developed above are well suited to the solution 
of the capillary equation (3) and the contact angle boundary condition (5), both of 
which are nonlinear, The reduced quadratic, biquadratic, and Hermite bicubic 
approximations are all more efficient than the standard bilinear approximation for the 
model problem considered here. The efficiency of these approximations rests on the 
small number of elements needed for very accurate solutions; the systems of linear 
equations resulting from the Newton iteration are of moderate size (JV < 1000) and 
can be solved efficiently by direct factorization using only storage in the computer’s 
central memory. Solutions of this same accuracy constructed from either the bilinear 
finite-element or finite-difference approximations will involve much larger systems of 
equations and cannot be efficiently solved by direct methods. As shown above, the 
high-order accurate finite-element methods are even competitive with finite-difference 
approximations coupled with very efficient iterative matrix methods. 

The finite-element methodology presented here is not limited to geometries as 
simple as a square. The isoparametric element mappings described in [ 171 formalize 
the construction of approximations to irregular boundaries which are consistent with 
the overall accuracy of the finite-element scheme. The contact-angle boundary condi- 
tion (5) is incorporated just as above. This is a considerable simplification over 
finite-difference methods where great care must be taken in constructing an approxima- 
tion to Eq. (5) consistent with the approximation to the differential equation (4). 
Isoparametric mappings are employed in [lo] for the reduced quadratic finite-element 
approximation to an interface in a capillary of elliptical cross section. 
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